Cargando…

Analysis of risk factors for C5 nerve root paralysis after posterior cervical decompression

BACKGROUND: C5 nerve root paralysis is a nonnegligible complication after posterior cervical spine surgery (PCSS). The cause of its occurrence remains controversial. The purpose of this study was to analyse the incidence of and risk factors for C5 nerve root paralysis after posterior cervical decomp...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bo, Chu, Yanchen, Ma, Jinfeng, Tang, Xiaojie, Pan, Junpeng, Wu, Chunbing, Chen, Xiao, Zhao, Chengliang, Wang, Zhijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272892/
https://www.ncbi.nlm.nih.gov/pubmed/34246250
http://dx.doi.org/10.1186/s12891-021-04434-y
Descripción
Sumario:BACKGROUND: C5 nerve root paralysis is a nonnegligible complication after posterior cervical spine surgery (PCSS). The cause of its occurrence remains controversial. The purpose of this study was to analyse the incidence of and risk factors for C5 nerve root paralysis after posterior cervical decompression. METHODS: We retrospectively analysed the clinical data of 640 patients who underwent PCSS in the Department of Orthopaedics, Affiliated Hospital of Qingdao University from September 2013 to September 2019. According to the status of C5 nerve root paralysis after surgery, all patients were divided into paralysis and normal groups. Univariate and multivariate analyses were used to determine the independent risk factors for C5 nerve root paralysis. A receiver operating characteristic (ROC) curve was used to demonstrate the discrimination of all independent risk factors. RESULTS: Multivariate logistic regression analysis revealed that male sex, preoperative cervical spine curvature, posterior longitudinal ligament ossification, and preoperative C4/5 spinal cord hyperintensity were independent risk factors for paralysis, whereas the width of the intervertebral foramina was an independent protective factor for paralysis. The area under the curve (AUC) values of the T2 signal change at C4-C5, sex, cervical foramina width, curvature and posterior longitudinal ligament ossification were 0.706, 0.633, 0.617, 0.637, and 0.569, respectively. CONCLUSIONS: Male patients with C4-C5 intervertebral foramina stenosis, preoperative C4-C5 spinal cord T2 high signal, combined with OPLL, and higher preoperative cervical spine curvature are more likely to develop C5 nerve root paralysis after surgery. Among the above five risk factors, T2 hyperintensity change in C4-C5 exhibits the highest correlation with C5 paralysis and strong diagnostic power. It seems necessary to inform patients who have had cervical spine T2 hyperintensity before surgery of C5 nerve root paralysis after surgery, especially those with altered spinal cord T2 signals in the C4-C5 segment.