Cargando…
Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT
Because of the rapid spread and wide range of the clinical manifestations of the coronavirus disease 2019 (COVID-19), fast and accurate estimation of the disease progression and mortality is vital for the management of the patients. Currently available image-based prognostic predictors for patients...
Autores principales: | Uemura, Tomoki, Näppi, Janne J., Watari, Chinatsu, Hironaka, Toru, Kamiya, Tohru, Yoshida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272947/ https://www.ncbi.nlm.nih.gov/pubmed/34303892 http://dx.doi.org/10.1016/j.media.2021.102159 |
Ejemplares similares
-
U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19
por: Näppi, Janne J., et al.
Publicado: (2021) -
A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
por: Uemura, Tomoki, et al.
Publicado: (2020) -
Self-Supervised Adversarial Learning with a Limited Dataset for Electronic Cleansing in Computed Tomographic Colonography: A Preliminary Feasibility Study
por: Tachibana, Rie, et al.
Publicado: (2022) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022) -
Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
por: Yu, Wenshuo, et al.
Publicado: (2023)