Cargando…
A High Accuracy Electrographic Seizure Classifier Trained Using Semi-Supervised Labeling Applied to a Large Spectrogram Dataset
The objective of this study was to explore using ECoG spectrogram images for training reliable cross-patient electrographic seizure classifiers, and to characterize the classifiers’ test accuracy as a function of amount of training data. ECoG channels in ∼138,000 time-series ECoG records from 113 pa...
Autores principales: | Barry, Wade, Arcot Desai, Sharanya, Tcheng, Thomas K., Morrell, Martha J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273175/ https://www.ncbi.nlm.nih.gov/pubmed/34262426 http://dx.doi.org/10.3389/fnins.2021.667373 |
Ejemplares similares
-
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
Non-linear Embedding Methods for Identifying Similar Brain Activity in 1 Million iEEG Records Captured From 256 RNS System Patients
por: Arcot Desai, Sharanya, et al.
Publicado: (2022) -
Incidence of Electrographic Seizures in Patients With COVID-19
por: Waters, Brandon L., et al.
Publicado: (2021) -
Short-Term Effects of Phenobarbitone on Electrographic Seizures in Neonates
por: Low, Evonne, et al.
Publicado: (2016) -
Electrographic Seizures in Neonates with a High Risk of Encephalopathy
por: Chen, Wan-Hsuan, et al.
Publicado: (2022)