Cargando…
Identification of Electroencephalogram Signals in Alzheimer's Disease by Multifractal and Multiscale Entropy Analysis
Alzheimer's disease (AD) is the most common form of dementia and is a progressive neurodegenerative disease that primarily develops in old age. In recent years, it has been reported that early diagnosis of AD and early intervention significantly delays disease progression. Hence, early diagnosi...
Autores principales: | Ando, Momo, Nobukawa, Sou, Kikuchi, Mitsuru, Takahashi, Tetsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273283/ https://www.ncbi.nlm.nih.gov/pubmed/34262427 http://dx.doi.org/10.3389/fnins.2021.667614 |
Ejemplares similares
-
Alteration of Neural Network Activity With Aging Focusing on Temporal Complexity and Functional Connectivity Within Electroencephalography
por: Ando, Momo, et al.
Publicado: (2022) -
Classification Methods Based on Complexity and Synchronization of Electroencephalography Signals in Alzheimer’s Disease
por: Nobukawa, Sou, et al.
Publicado: (2020) -
Altered electroencephalogram complexity in autistic children shown by the multiscale entropy approach
por: Liu, Tian, et al.
Publicado: (2017) -
Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline
por: Nobukawa, Sou, et al.
Publicado: (2018) -
Changes in EEG Complexity with Electroconvulsive Therapy in a Patient with Autism Spectrum Disorders: A Multiscale Entropy Approach
por: Okazaki, Ryoko, et al.
Publicado: (2015)