Cargando…
Statistical and machine learning methods for spatially resolved transcriptomics with histology
Recent developments in spatially resolved transcriptomics (SRT) technologies have enabled scientists to get an integrated understanding of cells in their morphological context. Applications of these technologies in diverse tissues and diseases have transformed our views of transcriptional complexity...
Autores principales: | Hu, Jian, Schroeder, Amelia, Coleman, Kyle, Chen, Chixiang, Auerbach, Benjamin J., Li, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273359/ https://www.ncbi.nlm.nih.gov/pubmed/34285782 http://dx.doi.org/10.1016/j.csbj.2021.06.052 |
Ejemplares similares
-
Statistical and machine learning methods for spatially resolved transcriptomics data analysis
por: Zeng, Zexian, et al.
Publicado: (2022) -
SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
por: Coleman, Kyle, et al.
Publicado: (2023) -
Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding
por: Shen, Rongbo, et al.
Publicado: (2022) -
Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA
por: Hu, Jian, et al.
Publicado: (2023) -
Spatially Resolved Transcriptomics Deconvolutes Prognostic Histological Subgroups in Patients with Colorectal Cancer and Synchronous Liver Metastases
por: Wood, Colin S., et al.
Publicado: (2023)