Cargando…
Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms
Background: Acute myocardial infarction (AMI) is associated with a poor prognosis. Therefore, accurate diagnosis and early intervention of the culprit lesion are of extreme importance. Therefore, we developed a neural network algorithm in this study to automatically diagnose AMI from 12-lead electro...
Autores principales: | Chen, Xiehui, Guo, Wenqin, Zhao, Lingyue, Huang, Weichao, Wang, Lili, Sun, Aimei, Li, Lang, Mo, Fanrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273385/ https://www.ncbi.nlm.nih.gov/pubmed/34262951 http://dx.doi.org/10.3389/fcvm.2021.654515 |
Ejemplares similares
-
Corrigendum: Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms
por: Chen, Xiehui, et al.
Publicado: (2021) -
Comparative Effectiveness of Complete Revascularization Strategies in Patients With ST-Segment Elevation Myocardial Infarction and Multivessel Disease: A Bayesian Network Meta-Analysis
por: Zhao, Lingyue, et al.
Publicado: (2021) -
Clinical benefit of sodium-glucose transport protein-2 inhibitors in patients with heart failure: An updated meta-analysis and trial sequential analysis
por: Chen, Xiehui, et al.
Publicado: (2022) -
Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review
por: Xiong, Ping, et al.
Publicado: (2022) -
Bleeding risks with novel oral anticoagulants especially rivaroxaban versus aspirin: a meta-analysis
por: Chen, Xiehui, et al.
Publicado: (2021)