Cargando…
An in silico drug repositioning workflow for host-based antivirals
Drug repositioning represents a cost- and time-efficient strategy for drug development. Artificial intelligence-based algorithms have been applied in drug repositioning by predicting drug-target interactions in an efficient and high throughput manner. Here, we present a workflow of in silico drug re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273420/ https://www.ncbi.nlm.nih.gov/pubmed/34286288 http://dx.doi.org/10.1016/j.xpro.2021.100653 |
Sumario: | Drug repositioning represents a cost- and time-efficient strategy for drug development. Artificial intelligence-based algorithms have been applied in drug repositioning by predicting drug-target interactions in an efficient and high throughput manner. Here, we present a workflow of in silico drug repositioning for host-based antivirals using specially defined targets, a refined list of drug candidates, and an easily implemented computational framework. The workflow described here can also apply to more general purposes, especially when given a user-defined druggable target gene set. For complete details on the use and execution of this protocol, please refer to Li et al. (2021). |
---|