Cargando…
Hybrid hyperalignment: A single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity
Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals’ brain data into a common model space while maintaining the geometric relationships between distinct patter...
Autores principales: | Busch, Erica L., Slipski, Lukas, Feilong, Ma, Guntupalli, J. Swaroop, di Oleggio Castello, Matteo Visconti, Huckins, Jeremy F., Nastase, Samuel A., Gobbini, M. Ida, Wager, Tor D., Haxby, James V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273921/ https://www.ncbi.nlm.nih.gov/pubmed/33762217 http://dx.doi.org/10.1016/j.neuroimage.2021.117975 |
Ejemplares similares
-
Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies
por: Haxby, James V, et al.
Publicado: (2020) -
Shared neural codes for visual and semantic information about familiar faces in a common representational space
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2021) -
Modeling naturalistic face processing in humans with deep convolutional neural networks
por: Jiahui, Guo, et al.
Publicado: (2023) -
Facilitated detection of social cues conveyed by familiar faces
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2014) -
Attention Selectively Reshapes the Geometry of Distributed Semantic
Representation
por: Nastase, Samuel A., et al.
Publicado: (2017)