Cargando…
Endemic–epidemic models to understand COVID-19 spatio-temporal evolution
We propose an endemic–epidemic model: a negative binomial space–time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affecte...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274278/ https://www.ncbi.nlm.nih.gov/pubmed/34307007 http://dx.doi.org/10.1016/j.spasta.2021.100528 |
Sumario: | We propose an endemic–epidemic model: a negative binomial space–time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affected by the pandemic and characterized by similar non-pharmaceutical policy interventions. |
---|