Cargando…

Endemic–epidemic models to understand COVID-19 spatio-temporal evolution

We propose an endemic–epidemic model: a negative binomial space–time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affecte...

Descripción completa

Detalles Bibliográficos
Autores principales: Celani, Alessandro, Giudici, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274278/
https://www.ncbi.nlm.nih.gov/pubmed/34307007
http://dx.doi.org/10.1016/j.spasta.2021.100528
Descripción
Sumario:We propose an endemic–epidemic model: a negative binomial space–time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affected by the pandemic and characterized by similar non-pharmaceutical policy interventions.