Cargando…
Endemic–epidemic models to understand COVID-19 spatio-temporal evolution
We propose an endemic–epidemic model: a negative binomial space–time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affecte...
Autores principales: | Celani, Alessandro, Giudici, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274278/ https://www.ncbi.nlm.nih.gov/pubmed/34307007 http://dx.doi.org/10.1016/j.spasta.2021.100528 |
Ejemplares similares
-
Spatio-temporal evolution and influencing mechanism of the COVID-19 epidemic in Shandong province, China
por: Shi, Jinlong, et al.
Publicado: (2021) -
Spatio-temporal evolution of Beijing 2003 SARS epidemic
por: Cao, ZhiDong, et al.
Publicado: (2010) -
The spatio-temporal epidemic dynamics of COVID-19 outbreak in Africa
por: Gayawan, Ezra, et al.
Publicado: (2020) -
Spatial clustering in the spatio-temporal dynamics of endemic cholera
por: Ruiz-Moreno, Diego, et al.
Publicado: (2010) -
Spatio-temporal evolution of the COVID-19 across African countries
por: Naffeti, Bechir, et al.
Publicado: (2022)