Cargando…
Deep Learning Framework for Real-Time Estimation of in-silico Thrombotic Risk Indices in the Left Atrial Appendage
Patient-specific computational fluid dynamics (CFD) simulations can provide invaluable insight into the interaction of left atrial appendage (LAA) morphology, hemodynamics, and the formation of thrombi in atrial fibrillation (AF) patients. Nonetheless, CFD solvers are notoriously time-consuming and...
Autores principales: | Morales Ferez, Xabier, Mill, Jordi, Juhl, Kristine Aavild, Acebes, Cesar, Iriart, Xavier, Legghe, Benoit, Cochet, Hubert, De Backer, Ole, Paulsen, Rasmus R., Camara, Oscar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274486/ https://www.ncbi.nlm.nih.gov/pubmed/34262482 http://dx.doi.org/10.3389/fphys.2021.694945 |
Ejemplares similares
-
Evaluation of left atrial remodelling following percutaneous left atrial appendage closure
por: Jalal, Zakaria, et al.
Publicado: (2017) -
Joint Analysis of Morphological Parameters and In Silico Haemodynamics of the Left Atrial Appendage for Thrombogenic Risk Assessment
por: Pons, Maria Isabel, et al.
Publicado: (2022) -
In silico Optimization of Left Atrial Appendage Occluder Implantation Using Interactive and Modeling Tools
por: Aguado, Ainhoa M., et al.
Publicado: (2019) -
Domain expert evaluation of advanced visual computing solutions and 3D printing for the planning of the left atrial appendage occluder interventions
por: Mill, Jordi, et al.
Publicado: (2022) -
Giant coronary artery aneurysm in a patient with LEOPARD syndrome
por: Bourgain, Marion, et al.
Publicado: (2019)