Cargando…
MRI texture features from tumor core and margin in the prediction of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer
Background: Radiomics involving quantitative analysis of imaging has shown promises in oncology to serve as non-invasive biomarkers. We investigated whether pre-treatment T2-weighted magnetic resonance imaging (MRI) can be used to predict response to neoadjuvant chemotherapy (NAC) in breast cancer....
Autores principales: | Kolios, Christopher, Sannachi, Lakshmanan, Dasgupta, Archya, Suraweera, Harini, DiCenzo, Daniel, Stanisz, Gregory, Sahgal, Arjun, Wright, Frances, Look-Hong, Nicole, Curpen, Belinda, Sadeghi-Naini, Ali, Trudeau, Maureen, Gandhi, Sonal, Kolios, Michael C., Czarnota, Gregory J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274727/ https://www.ncbi.nlm.nih.gov/pubmed/34262646 http://dx.doi.org/10.18632/oncotarget.28002 |
Ejemplares similares
-
Quantitative ultrasound radiomics for therapy response monitoring in patients with locally advanced breast cancer: Multi-institutional study results
por: Quiaoit, Karina, et al.
Publicado: (2020) -
Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi‐institutional study
por: DiCenzo, Daniel, et al.
Publicado: (2020) -
Quantitative ultrasound radiomics using texture derivatives in prediction of treatment response to neo-adjuvant chemotherapy for locally advanced breast cancer
por: Dasgupta, Archya, et al.
Publicado: (2020) -
Radiomics in predicting recurrence for patients with locally advanced breast cancer using quantitative ultrasound
por: Dasgupta, Archya, et al.
Publicado: (2021) -
Predicting head and neck cancer treatment outcomes with pre-treatment quantitative ultrasound texture features and optimising machine learning classifiers with texture-of-texture features
por: Safakish, Aryan, et al.
Publicado: (2023)