Cargando…
MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation
Segmentation of retinal vessels is important for doctors to diagnose some diseases. The segmentation accuracy of retinal vessels can be effectively improved by using deep learning methods. However, most of the existing methods are incomplete for shallow feature extraction, and some superficial featu...
Autores principales: | Jiang, Yun, Wu, Chao, Wang, Ge, Yao, Hui-Xia, Liu, Wen-Huan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274903/ https://www.ncbi.nlm.nih.gov/pubmed/34252111 http://dx.doi.org/10.1371/journal.pone.0253056 |
Ejemplares similares
-
A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation
por: Yang, Dan, et al.
Publicado: (2020) -
CPMF-Net: Multi-Feature Network Based on Collaborative Patches for Retinal Vessel Segmentation
por: Tang, Wentao, et al.
Publicado: (2022) -
TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation
por: Zhang, Hongbin, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel
por: Huang, Jianping, et al.
Publicado: (2022)