Cargando…
BCDnet: Parallel heterogeneous eight-class classification model of breast pathology
Breast cancer is the cancer with the highest incidence of malignant tumors in women, which seriously endangers women’s health. With the help of computer vision technology, it has important application value to automatically classify pathological tissue images to assist doctors in rapid and accurate...
Autores principales: | He, Qingfang, Cheng, Guang, Ju, Huimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274904/ https://www.ncbi.nlm.nih.gov/pubmed/34252112 http://dx.doi.org/10.1371/journal.pone.0253764 |
Ejemplares similares
-
Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images
por: Mi, Weiming, et al.
Publicado: (2021) -
Parallel computing on heterogeneous networks
por: Lastovetsky, Alexey L
Publicado: (2004) -
An update on the pathological classification of breast cancer
por: Rakha, Emad A, et al.
Publicado: (2022) -
Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble
por: Sarnovsky, Martin, et al.
Publicado: (2021) -
AutoClass@IJM: a powerful tool for Bayesian classification of heterogeneous data in biology
por: Achcar, Fiona, et al.
Publicado: (2009)