Cargando…

Proteasome activity contributes to pro-survival response upon mild mitochondrial stress in Caenorhabditis elegans

Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the “mitochondrial unfolded protein response” [UPRmt]) that is mediated by activating transcription...

Descripción completa

Detalles Bibliográficos
Autores principales: Sladowska, Maria, Turek, Michał, Kim, Min-Ji, Drabikowski, Krzysztof, Mussulini, Ben Hur Marins, Mohanraj, Karthik, Serwa, Remigiusz A., Topf, Ulrike, Chacinska, Agnieszka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274918/
https://www.ncbi.nlm.nih.gov/pubmed/34252079
http://dx.doi.org/10.1371/journal.pbio.3001302
Descripción
Sumario:Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the “mitochondrial unfolded protein response” [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the “unfolded protein response activated by mistargeting of proteins” [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.