Cargando…
On the feasibility of deep learning applications using raw mass spectrometry data
SUMMARY: In recent years, SWATH-MS has become the proteomic method of choice for data-independent–acquisition, as it enables high proteome coverage, accuracy and reproducibility. However, data analysis is convoluted and requires prior information and expert curation. Furthermore, as quantification i...
Autores principales: | Cadow, Joris, Manica, Matteo, Mathis, Roland, Reddel, Roger R, Robinson, Phillip J, Wild, Peter J, Hains, Peter G, Lucas, Natasha, Zhong, Qing, Guo, Tiannan, Aebersold, Ruedi, Rodríguez Martínez, María |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275322/ https://www.ncbi.nlm.nih.gov/pubmed/34252933 http://dx.doi.org/10.1093/bioinformatics/btab311 |
Ejemplares similares
-
Deep multiple instance learning classifies subtissue locations in mass spectrometry images from tissue-level annotations
por: Guo, Dan, et al.
Publicado: (2020) -
MS2Planner: improved fragmentation spectra coverage in untargeted mass spectrometry by iterative optimized data acquisition
por: Zuo, Zeyuan, et al.
Publicado: (2021) -
Getting ‘ϕψχal’ with proteins: minimum message length inference of joint distributions of backbone and sidechain dihedral angles
por: Amarasinghe, Piyumi R, et al.
Publicado: (2023) -
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization
por: Krieger, Spencer, et al.
Publicado: (2020)