Cargando…
TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings
MOTIVATION: Large-scale cancer omics studies have highlighted the diversity of patient molecular profiles and the importance of leveraging this information to deliver the right drug to the right patient at the right time. Key challenges in learning predictive models for this include the high-dimensi...
Autores principales: | Peres da Silva, Rafael, Suphavilai, Chayaporn, Nagarajan, Niranjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275325/ https://www.ncbi.nlm.nih.gov/pubmed/34000002 http://dx.doi.org/10.1093/bioinformatics/btab299 |
Ejemplares similares
-
SynBa: improved estimation of drug combination synergies with uncertainty quantification
por: Zhang, Haoting, et al.
Publicado: (2023) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021) -
OncoThreads: visualization of large-scale longitudinal cancer molecular data
por: Harbig, Theresa A, et al.
Publicado: (2021)