Cargando…
Asynchronous parallel Bayesian optimization for AI-driven cloud laboratories
MOTIVATION: The recent emergence of cloud laboratories—collections of automated wet-lab instruments that are accessed remotely, presents new opportunities to apply Artificial Intelligence and Machine Learning in scientific research. Among these is the challenge of automating the process of optimizin...
Autores principales: | Frisby, Trevor S, Gong, Zhiyun, Langmead, Christopher James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275326/ https://www.ncbi.nlm.nih.gov/pubmed/34252975 http://dx.doi.org/10.1093/bioinformatics/btab291 |
Ejemplares similares
-
Bayesian optimization with evolutionary and structure-based regularization for directed protein evolution
por: Frisby, Trevor S., et al.
Publicado: (2021) -
Concurrency in C# cookbook: asynchronous, parallel, and multithreaded programming
por: Cleary, Stephen
Publicado: (2019) -
Google Cloud AI Services quick start guide: build intelligent applications with Google Cloud AI Services
por: Ravulavaru, Arvind
Publicado: (2018) -
Expert twisted: event-driven and asynchronous programming with Python
por: Williams, Mark
Publicado: (2019) -
Expert twisted: event-driven and asynchronous programming with Python
por: Williams, Mark, et al.
Publicado: (2018)