Cargando…
Investigation of REFINED CNN ensemble learning for anti-cancer drug sensitivity prediction
MOTIVATION: Anti-cancer drug sensitivity prediction using deep learning models for individual cell line is a significant challenge in personalized medicine. Recently developed REFINED (REpresentation of Features as Images with NEighborhood Dependencies) CNN (Convolutional Neural Network)-based model...
Autores principales: | Bazgir, Omid, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275339/ https://www.ncbi.nlm.nih.gov/pubmed/34252971 http://dx.doi.org/10.1093/bioinformatics/btab336 |
Ejemplares similares
-
Federated learning framework integrating REFINED CNN and Deep Regression Forests
por: Nolte, Daniel, et al.
Publicado: (2023) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021) -
PPAD: a deep learning architecture to predict progression of Alzheimer’s disease
por: Al Olaimat, Mohammad, et al.
Publicado: (2023) -
PlasmoFAB: a benchmark to foster machine learning for Plasmodium falciparum protein antigen candidate prediction
por: Ditz, Jonas C, et al.
Publicado: (2023)