Cargando…
Disease gene prediction with privileged information and heteroscedastic dropout
MOTIVATION: Recently, machine learning models have achieved tremendous success in prioritizing candidate genes for genetic diseases. These models are able to accurately quantify the similarity among disease and genes based on the intuition that similar genes are more likely to be associated with sim...
Autores principales: | Shu, Juan, Li, Yu, Wang, Sheng, Xi, Bowei, Ma, Jianzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275341/ https://www.ncbi.nlm.nih.gov/pubmed/34252957 http://dx.doi.org/10.1093/bioinformatics/btab310 |
Ejemplares similares
-
Prediction of cancer driver genes through network-based moment propagation of mutation scores
por: Gumpinger, Anja C, et al.
Publicado: (2020) -
Gemini: memory-efficient integration of hundreds of gene networks with high-order pooling
por: Woicik, Addie, et al.
Publicado: (2023) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020) -
GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks
por: Devkota, Kapil, et al.
Publicado: (2020) -
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
por: Wang, Shike, et al.
Publicado: (2021)