Cargando…
Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model
MOTIVATION: Accumulating evidence has highlighted the importance of microbial interaction networks. Methods have been developed for estimating microbial interaction networks, of which the generalized Lotka–Volterra equation (gLVE)-based method can estimate a directed interaction network. The previou...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275348/ https://www.ncbi.nlm.nih.gov/pubmed/34252954 http://dx.doi.org/10.1093/bioinformatics/btab287 |
Sumario: | MOTIVATION: Accumulating evidence has highlighted the importance of microbial interaction networks. Methods have been developed for estimating microbial interaction networks, of which the generalized Lotka–Volterra equation (gLVE)-based method can estimate a directed interaction network. The previous gLVE-based method for estimating microbial interaction networks did not consider time-varying interactions. RESULTS: In this study, we developed unsupervised learning-based microbial interaction inference method using Bayesian estimation (Umibato), a method for estimating time-varying microbial interactions. The Umibato algorithm comprises Gaussian process regression (GPR) and a new Bayesian probabilistic model, the continuous-time regression hidden Markov model (CTRHMM). Growth rates are estimated by GPR, and interaction networks are estimated by CTRHMM. CTRHMM can estimate time-varying interaction networks using interaction states, which are defined as hidden variables. Umibato outperformed the existing methods on synthetic datasets. In addition, it yielded reasonable estimations in experiments on a mouse gut microbiota dataset, thus providing novel insights into the relationship between consumed diets and the gut microbiota. AVAILABILITY AND IMPLEMENTATION: The C++ and python source codes of the Umibato software are available at https://github.com/shion-h/Umibato. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|