Cargando…

Desmin Correlated with Cx43 May Facilitate Intercellular Electrical Coupling during Chronic Heart Failure

Desmin is one of five major intermediate filament proteins in cardiomyocytes. Desmin contributes to the maintenance of healthy muscle. The desmin content in cardiomyocytes directly affects the long-term prognosis of patients with heart failure, and lack of desmin leads to myocyte contractile dysfunc...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Junxian, Gao, Qianping, Chen, Hongyan, Wang, Can, Zhang, Qiuju, Wang, Zhipeng, Li, Yuanshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275391/
https://www.ncbi.nlm.nih.gov/pubmed/34285704
http://dx.doi.org/10.1155/2021/6621132
Descripción
Sumario:Desmin is one of five major intermediate filament proteins in cardiomyocytes. Desmin contributes to the maintenance of healthy muscle. The desmin content in cardiomyocytes directly affects the long-term prognosis of patients with heart failure, and lack of desmin leads to myocyte contractile dysfunction. However, the mechanism is elusive. In this study, we measured desmin expression using western blotting and qPCR in the failed hearts of human patients and rats. Our results showed that desmin content was reduced at the protein level in failed hearts and isolated cardiomyocytes. The association of desmin and the gap junction proteins connexin 43 (Cx43) and zonula occludens-1 (ZO-1) was also investigated. Immunoprecipitation assay showed that desmin was associated with Cx43 in cardiomyocytes. To compare the electrical integration of skeletal myoblasts in cocultures with cardiac myocytes, familial amyloid polyneuropathy (FAP) activation rate was found in 33% desmin overexpressing skeletal myoblasts. Desmin not only affected Cx43 and ZO-1 expression but also facilitated the complex of Cx43 and ZO-1 in skeletal myoblasts, which enhanced cell-to-cell electrical coupling of skeletal myoblasts with cardiac myocytes. Desmin has potential as a novel therapeutic target for heart failure. Preservation of desmin may attenuate heart failure.