Cargando…
Clinical Feature-Based Machine Learning Model for 1-Year Mortality Risk Prediction of ST-Segment Elevation Myocardial Infarction in Patients with Hyperuricemia: A Retrospective Study
Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We aimed to evaluate the performance of differ...
Autores principales: | Bai, Zhixun, Lu, Jing, Li, Ting, Ma, Yi, Liu, Zhijiang, Zhao, Ranzun, Wang, Zhenglong, Shi, Bei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275420/ https://www.ncbi.nlm.nih.gov/pubmed/34285708 http://dx.doi.org/10.1155/2021/7252280 |
Ejemplares similares
-
Development of a machine learning model to predict the risk of late cardiogenic shock in patients with ST-segment elevation myocardial infarction
por: Bai, Zhixun, et al.
Publicado: (2021) -
Nomogram for the Prediction of Intrahospital Mortality Risk of Patients with ST-Segment Elevation Myocardial Infarction Complicated with Hyperuricemia: A Multicenter Retrospective Study
por: Bai, Zhixun, et al.
Publicado: (2021) -
Machine learning for predicting intrahospital mortality in ST-elevation myocardial infarction patients with type 2 diabetes mellitus
por: Chen, Panke, et al.
Publicado: (2023) -
Characteristics and mechanism of reciprocal ST-segment depression in acute ST segment elevation myocardial infarction: Reciprocal ST-segment depression and ST segment elevation myocardial infarction
por: Gao, Qijun, et al.
Publicado: (2022) -
Gender differences in mortality in patients with ST-segment elevation myocardial infarction
por: Raymundo-Martínez, Grecia I.M., et al.
Publicado: (2021)