Cargando…

Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates

Hawkes processes are used in statistical modeling for event clustering and causal inference, while they also can be viewed as stochastic versions of popular compartmental models used in epidemiology. Here we show how to develop accurate models of COVID-19 transmission using Hawkes processes with spa...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiang, Wen-Hao, Liu, Xueying, Mohler, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Institute of Forecasters. Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275517/
https://www.ncbi.nlm.nih.gov/pubmed/34276115
http://dx.doi.org/10.1016/j.ijforecast.2021.07.001
Descripción
Sumario:Hawkes processes are used in statistical modeling for event clustering and causal inference, while they also can be viewed as stochastic versions of popular compartmental models used in epidemiology. Here we show how to develop accurate models of COVID-19 transmission using Hawkes processes with spatial-temporal covariates. We model the conditional intensity of new COVID-19 cases and deaths in the U.S. at the county level, estimating the dynamic reproduction number of the virus within an EM algorithm through a regression on Google mobility indices and demographic covariates in the maximization step. We validate the approach on both short-term and long-term forecasting tasks, showing that the Hawkes process outperforms several models currently used to track the pandemic, including an ensemble approach and an SEIR-variant. We also investigate which covariates and mobility indices are most important for building forecasts of COVID-19 in the U.S.