Cargando…

Poly (red DSBR)/Al-ZnO modified carbon paste electrode sensor for dopamine: a voltammetric study

In the present work, the ZnO and Al-ZnO nanoflakes (NFs) were synthesized by the co-precipitation process. The synthesized NFs were characterized by X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray spectrometer was explored for the elemental chemical composi...

Descripción completa

Detalles Bibliográficos
Autores principales: Shashikumara, J. K., Swamy, B. E. Kumara, Sharma, S. C., Hariprasad, S. A., Mohanty, Kaustubha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275598/
https://www.ncbi.nlm.nih.gov/pubmed/34253794
http://dx.doi.org/10.1038/s41598-021-93723-6
Descripción
Sumario:In the present work, the ZnO and Al-ZnO nanoflakes (NFs) were synthesized by the co-precipitation process. The synthesized NFs were characterized by X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray spectrometer was explored for the elemental chemical compositions. The prepared NFs were taken for the modification of the electrode and developed the modified electrode for the electrochemical analysis of the dopamine (DOA) at pH 7.4. The Al-ZnO modified carbon paste electrode (MCPE) was electropolymerised by using textile dye red DSBR. The Po-RD/Al-ZnO MCPE exhibited good electrochemical sensor properties towards the electrochemical detection of DOA. Several factors such as the impact of speed rate (υ), pH and concentration of the DOA were analyzed at the modified electrode. The great sensitivity was established to the fast electron-transfer kinetics and surface coverage of the DOA on the electrode. The prepared electrode exhibits satisfactory stability at the ambient conditions. The detection limit of 0.58 μM was achieved for the DOA. The decorated sensor was stable, sensitive, selective, and reproducible and used in the analytical applications.