Cargando…
Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
SARS-CoV-2 infection is characterized by a highly variable clinical course with patients experiencing asymptomatic infection all the way to requiring critical care support. This variation in clinical course has led physicians and scientists to study factors that may predispose certain individuals to...
Autores principales: | Sidhom, John-William, Baras, Alexander S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275616/ https://www.ncbi.nlm.nih.gov/pubmed/34253751 http://dx.doi.org/10.1038/s41598-021-93608-8 |
Ejemplares similares
-
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: Sidhom, John-William, et al.
Publicado: (2021) -
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: Sidhom, John-William, et al.
Publicado: (2021) -
Deep learning reveals predictive sequence concepts within immune repertoires to immunotherapy
por: Sidhom, John-William, et al.
Publicado: (2022) -
A Framework to Identify Antigen-Expanded T Cell Receptor Clusters Within Complex Repertoires
por: Ceglia, Valentina, et al.
Publicado: (2021) -
Predicting the antigenic evolution of SARS-COV-2 with deep learning
por: Han, Wenkai, et al.
Publicado: (2023)