Cargando…

A Review of miR-326 and Female Related Diseases

MicroRNA (miRNA), a non-coding single-stranded RNA molecule with 20–23 nucleotides encoded by endogenous genes, plays an essential role in maintaining normal cell function and regulating cell proliferation, differentiation, apoptosis, autophagy, and cell metabolism. The imbalance between miRNA and g...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Li-na, Zhang, Qing-mei, Ge, Ying-ying, Luo, Bin, Xie, Xiao-xun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275862/
https://www.ncbi.nlm.nih.gov/pubmed/34276101
http://dx.doi.org/10.1267/ahc.20-00027
Descripción
Sumario:MicroRNA (miRNA), a non-coding single-stranded RNA molecule with 20–23 nucleotides encoded by endogenous genes, plays an essential role in maintaining normal cell function and regulating cell proliferation, differentiation, apoptosis, autophagy, and cell metabolism. The imbalance between miRNA and genes can cause a series of diseases, including malignancies. miRNA-326 (miR-326) is extensively known for its core regulation of various biological processes. This review presents an overview of the highlights of miR-326 in female-related diseases. To understand the impact of miR-326 on female disorders, we search all published studies about miR-326 having a high incidence in female conditions, including cervical cancer, endometrial cancer, breast cancer, intrauterine adhesion, and multiple autoimmune diseases. We aim to learn about the mutual regulation mechanism between miR-326 and related genes and signaling pathways, as well as to elaborate on the value of miR-326 as a potential biomarker and therapeutic target of female diseases. Our results provide reliable evidence and new strategies for treating female tumors and autoimmune diseases.