Cargando…

Predicting material microstructure evolution via data-driven machine learning

Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by t...

Descripción completa

Detalles Bibliográficos
Autor principal: Kautz, Elizabeth J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276005/
https://www.ncbi.nlm.nih.gov/pubmed/34286300
http://dx.doi.org/10.1016/j.patter.2021.100285
_version_ 1783721827471720448
author Kautz, Elizabeth J.
author_facet Kautz, Elizabeth J.
author_sort Kautz, Elizabeth J.
collection PubMed
description Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by the practical needs to accelerate the materials design process and deal with incomplete information in the real world of microstructure simulation.
format Online
Article
Text
id pubmed-8276005
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82760052021-07-19 Predicting material microstructure evolution via data-driven machine learning Kautz, Elizabeth J. Patterns (N Y) Preview Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by the practical needs to accelerate the materials design process and deal with incomplete information in the real world of microstructure simulation. Elsevier 2021-06-18 /pmc/articles/PMC8276005/ /pubmed/34286300 http://dx.doi.org/10.1016/j.patter.2021.100285 Text en © 2021 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Preview
Kautz, Elizabeth J.
Predicting material microstructure evolution via data-driven machine learning
title Predicting material microstructure evolution via data-driven machine learning
title_full Predicting material microstructure evolution via data-driven machine learning
title_fullStr Predicting material microstructure evolution via data-driven machine learning
title_full_unstemmed Predicting material microstructure evolution via data-driven machine learning
title_short Predicting material microstructure evolution via data-driven machine learning
title_sort predicting material microstructure evolution via data-driven machine learning
topic Preview
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276005/
https://www.ncbi.nlm.nih.gov/pubmed/34286300
http://dx.doi.org/10.1016/j.patter.2021.100285
work_keys_str_mv AT kautzelizabethj predictingmaterialmicrostructureevolutionviadatadrivenmachinelearning