Cargando…
Predicting material microstructure evolution via data-driven machine learning
Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276005/ https://www.ncbi.nlm.nih.gov/pubmed/34286300 http://dx.doi.org/10.1016/j.patter.2021.100285 |
_version_ | 1783721827471720448 |
---|---|
author | Kautz, Elizabeth J. |
author_facet | Kautz, Elizabeth J. |
author_sort | Kautz, Elizabeth J. |
collection | PubMed |
description | Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by the practical needs to accelerate the materials design process and deal with incomplete information in the real world of microstructure simulation. |
format | Online Article Text |
id | pubmed-8276005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82760052021-07-19 Predicting material microstructure evolution via data-driven machine learning Kautz, Elizabeth J. Patterns (N Y) Preview Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by the practical needs to accelerate the materials design process and deal with incomplete information in the real world of microstructure simulation. Elsevier 2021-06-18 /pmc/articles/PMC8276005/ /pubmed/34286300 http://dx.doi.org/10.1016/j.patter.2021.100285 Text en © 2021 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Preview Kautz, Elizabeth J. Predicting material microstructure evolution via data-driven machine learning |
title | Predicting material microstructure evolution via data-driven machine learning |
title_full | Predicting material microstructure evolution via data-driven machine learning |
title_fullStr | Predicting material microstructure evolution via data-driven machine learning |
title_full_unstemmed | Predicting material microstructure evolution via data-driven machine learning |
title_short | Predicting material microstructure evolution via data-driven machine learning |
title_sort | predicting material microstructure evolution via data-driven machine learning |
topic | Preview |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276005/ https://www.ncbi.nlm.nih.gov/pubmed/34286300 http://dx.doi.org/10.1016/j.patter.2021.100285 |
work_keys_str_mv | AT kautzelizabethj predictingmaterialmicrostructureevolutionviadatadrivenmachinelearning |