Cargando…
RaFAH: Host prediction for viruses of Bacteria and Archaea based on protein content
Culture-independent approaches have recently shed light on the genomic diversity of viruses of prokaryotes. One fundamental question when trying to understand their ecological roles is: which host do they infect? To tackle this issue we developed a machine-learning approach named Random Forest Assig...
Autores principales: | Coutinho, Felipe Hernandes, Zaragoza-Solas, Asier, López-Pérez, Mario, Barylski, Jakub, Zielezinski, Andrzej, Dutilh, Bas E., Edwards, Robert, Rodriguez-Valera, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276007/ https://www.ncbi.nlm.nih.gov/pubmed/34286299 http://dx.doi.org/10.1016/j.patter.2021.100274 |
Ejemplares similares
-
Charting the diversity of uncultured viruses of Archaea and Bacteria
por: Coutinho, F. H., et al.
Publicado: (2019) -
A holistic genome dataset of bacteria, archaea and viruses of the Pearl River estuary
por: Xu, Bu, et al.
Publicado: (2022) -
iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria
por: Roux, Simon, et al.
Publicado: (2023) -
Taxonomy-aware, sequence similarity ranking reliably predicts phage–host relationships
por: Zielezinski, Andrzej, et al.
Publicado: (2021) -
Metagenome Mining Reveals Hidden Genomic Diversity of Pelagimyophages in Aquatic Environments
por: Zaragoza-Solas, Asier, et al.
Publicado: (2020)