Cargando…

Advancing sensory neuroprosthetics using artificial brain networks

Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain’s visual system, optic nerve stimulation patterns could be derived t...

Descripción completa

Detalles Bibliográficos
Autores principales: Haslacher, David, Nasr, Khaled, Soekadar, Surjo R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276008/
https://www.ncbi.nlm.nih.gov/pubmed/34286308
http://dx.doi.org/10.1016/j.patter.2021.100304
_version_ 1783721828174266368
author Haslacher, David
Nasr, Khaled
Soekadar, Surjo R.
author_facet Haslacher, David
Nasr, Khaled
Soekadar, Surjo R.
author_sort Haslacher, David
collection PubMed
description Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain’s visual system, optic nerve stimulation patterns could be derived that are predictive of neural responses of higher-level cortical visual areas in silico. This novel approach could be generalized to optimize different types of neuroprosthetics or bidirectional brain-computer interfaces (BCIs).
format Online
Article
Text
id pubmed-8276008
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82760082021-07-19 Advancing sensory neuroprosthetics using artificial brain networks Haslacher, David Nasr, Khaled Soekadar, Surjo R. Patterns (N Y) Preview Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain’s visual system, optic nerve stimulation patterns could be derived that are predictive of neural responses of higher-level cortical visual areas in silico. This novel approach could be generalized to optimize different types of neuroprosthetics or bidirectional brain-computer interfaces (BCIs). Elsevier 2021-07-09 /pmc/articles/PMC8276008/ /pubmed/34286308 http://dx.doi.org/10.1016/j.patter.2021.100304 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Preview
Haslacher, David
Nasr, Khaled
Soekadar, Surjo R.
Advancing sensory neuroprosthetics using artificial brain networks
title Advancing sensory neuroprosthetics using artificial brain networks
title_full Advancing sensory neuroprosthetics using artificial brain networks
title_fullStr Advancing sensory neuroprosthetics using artificial brain networks
title_full_unstemmed Advancing sensory neuroprosthetics using artificial brain networks
title_short Advancing sensory neuroprosthetics using artificial brain networks
title_sort advancing sensory neuroprosthetics using artificial brain networks
topic Preview
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276008/
https://www.ncbi.nlm.nih.gov/pubmed/34286308
http://dx.doi.org/10.1016/j.patter.2021.100304
work_keys_str_mv AT haslacherdavid advancingsensoryneuroprostheticsusingartificialbrainnetworks
AT nasrkhaled advancingsensoryneuroprostheticsusingartificialbrainnetworks
AT soekadarsurjor advancingsensoryneuroprostheticsusingartificialbrainnetworks