Cargando…
Hydrogen storage in MOFs: Machine learning for finding a needle in a haystack
In recent years, machine learning (ML) has grown exponentially within the field of structure property predictions in materials science. In this issue of Patterns, Ahmed and Siegel scrutinize several redeveloped ML techniques for systematic investigations of over 900,000 metal-organic framework (MOF)...
Autores principales: | Glasby, Lawson T., Moghadam, Peyman Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276009/ https://www.ncbi.nlm.nih.gov/pubmed/34286309 http://dx.doi.org/10.1016/j.patter.2021.100305 |
Ejemplares similares
-
Shattering cancer with quantum machine learning: A preview
por: Geraci, Joseph
Publicado: (2021) -
Practical machine learning for disease diagnosis
por: Summers, Huw D.
Publicado: (2021) -
Sequencing meets machine learning to fight emerging pathogens: A preview
por: Yakimovich, Artur
Publicado: (2022) -
Finding the Needles in the Metagenome Haystack
por: Kowalchuk, George A., et al.
Publicado: (2007) -
Toward machine learning-enhanced high-throughput experimentation for chemistry
por: Callaghan, Sarah
Publicado: (2021)