Cargando…
Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases
Free-text clinical notes in electronic health records are more difficult for data mining while the structured diagnostic codes can be missing or erroneous. To improve the quality of diagnostic codes, this work extracts diagnostic codes from free-text notes: five old and new word vectorization method...
Autores principales: | Zhan, Xianghao, Humbert-Droz, Marie, Mukherjee, Pritam, Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276012/ https://www.ncbi.nlm.nih.gov/pubmed/34286303 http://dx.doi.org/10.1016/j.patter.2021.100289 |
Ejemplares similares
-
Strategies to Address the Lack of Labeled Data for Supervised Machine Learning Training With Electronic Health Records: Case Study for the Extraction of Symptoms From Clinical Notes
por: Humbert-Droz, Marie, et al.
Publicado: (2022) -
SCOPE: predicting future diagnoses in office visits using electronic health records
por: Mukherjee, Pritam, et al.
Publicado: (2023) -
AI-based analysis of CT images for rapid triage of COVID-19 patients
por: Xu, Qinmei, et al.
Publicado: (2021) -
Development and validation of MedDRA Tagger: a tool for extraction and structuring medical information from clinical notes
por: Humbert-Droz, Marie, et al.
Publicado: (2022) -
Practical Considerations for Developing Clinical Natural Language Processing Systems for Population Health Management and Measurement
por: Tamang, Suzanne, et al.
Publicado: (2023)