Cargando…

Privacy-preserving data sharing via probabilistic modeling

Differential privacy allows quantifying privacy loss resulting from accession of sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation but would leave open the problem of designing what kin...

Descripción completa

Detalles Bibliográficos
Autores principales: Jälkö, Joonas, Lagerspetz, Eemil, Haukka, Jari, Tarkoma, Sasu, Honkela, Antti, Kaski, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276015/
https://www.ncbi.nlm.nih.gov/pubmed/34286296
http://dx.doi.org/10.1016/j.patter.2021.100271
_version_ 1783721829832065024
author Jälkö, Joonas
Lagerspetz, Eemil
Haukka, Jari
Tarkoma, Sasu
Honkela, Antti
Kaski, Samuel
author_facet Jälkö, Joonas
Lagerspetz, Eemil
Haukka, Jari
Tarkoma, Sasu
Honkela, Antti
Kaski, Samuel
author_sort Jälkö, Joonas
collection PubMed
description Differential privacy allows quantifying privacy loss resulting from accession of sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation but would leave open the problem of designing what kind of synthetic data. We propose formulating the problem of private data release through probabilistic modeling. This approach transforms the problem of designing the synthetic data into choosing a model for the data, allowing also the inclusion of prior knowledge, which improves the quality of the synthetic data. We demonstrate empirically, in an epidemiological study, that statistical discoveries can be reliably reproduced from the synthetic data. We expect the method to have broad use in creating high-quality anonymized data twins of key datasets for research.
format Online
Article
Text
id pubmed-8276015
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82760152021-07-19 Privacy-preserving data sharing via probabilistic modeling Jälkö, Joonas Lagerspetz, Eemil Haukka, Jari Tarkoma, Sasu Honkela, Antti Kaski, Samuel Patterns (N Y) Article Differential privacy allows quantifying privacy loss resulting from accession of sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation but would leave open the problem of designing what kind of synthetic data. We propose formulating the problem of private data release through probabilistic modeling. This approach transforms the problem of designing the synthetic data into choosing a model for the data, allowing also the inclusion of prior knowledge, which improves the quality of the synthetic data. We demonstrate empirically, in an epidemiological study, that statistical discoveries can be reliably reproduced from the synthetic data. We expect the method to have broad use in creating high-quality anonymized data twins of key datasets for research. Elsevier 2021-06-07 /pmc/articles/PMC8276015/ /pubmed/34286296 http://dx.doi.org/10.1016/j.patter.2021.100271 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jälkö, Joonas
Lagerspetz, Eemil
Haukka, Jari
Tarkoma, Sasu
Honkela, Antti
Kaski, Samuel
Privacy-preserving data sharing via probabilistic modeling
title Privacy-preserving data sharing via probabilistic modeling
title_full Privacy-preserving data sharing via probabilistic modeling
title_fullStr Privacy-preserving data sharing via probabilistic modeling
title_full_unstemmed Privacy-preserving data sharing via probabilistic modeling
title_short Privacy-preserving data sharing via probabilistic modeling
title_sort privacy-preserving data sharing via probabilistic modeling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276015/
https://www.ncbi.nlm.nih.gov/pubmed/34286296
http://dx.doi.org/10.1016/j.patter.2021.100271
work_keys_str_mv AT jalkojoonas privacypreservingdatasharingviaprobabilisticmodeling
AT lagerspetzeemil privacypreservingdatasharingviaprobabilisticmodeling
AT haukkajari privacypreservingdatasharingviaprobabilisticmodeling
AT tarkomasasu privacypreservingdatasharingviaprobabilisticmodeling
AT honkelaantti privacypreservingdatasharingviaprobabilisticmodeling
AT kaskisamuel privacypreservingdatasharingviaprobabilisticmodeling