Cargando…
Privacy-preserving data sharing via probabilistic modeling
Differential privacy allows quantifying privacy loss resulting from accession of sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation but would leave open the problem of designing what kin...
Autores principales: | Jälkö, Joonas, Lagerspetz, Eemil, Haukka, Jari, Tarkoma, Sasu, Honkela, Antti, Kaski, Samuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276015/ https://www.ncbi.nlm.nih.gov/pubmed/34286296 http://dx.doi.org/10.1016/j.patter.2021.100271 |
Ejemplares similares
-
Digital public health leadership in the global fight for health security
por: AlKnawy, Bandar, et al.
Publicado: (2023) -
Estimating parameters for probabilistic linkage of privacy-preserved datasets
por: Brown, Adrian P., et al.
Publicado: (2017) -
Protecting Genomic Data Privacy with Probabilistic Modeling
por: Simmons, Sean, et al.
Publicado: (2019) -
Privacy preserving data sharing method for social media platforms
por: Yadav, Snehlata, et al.
Publicado: (2023) -
DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing
por: Li, Haoran, et al.
Publicado: (2014)