Cargando…
Predicting hydrogen storage in MOFs via machine learning
The H(2) capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials. The identif...
Autores principales: | Ahmed, Alauddin, Siegel, Donald J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276024/ https://www.ncbi.nlm.nih.gov/pubmed/34286305 http://dx.doi.org/10.1016/j.patter.2021.100291 |
Ejemplares similares
-
Hydrogen storage in MOFs: Machine learning for finding a needle in a haystack
por: Glasby, Lawson T., et al.
Publicado: (2021) -
Photoswitchable Zirconium MOF for Light-Driven Hydrogen Storage
por: Butova, Vera V., et al.
Publicado: (2021) -
Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks
por: Ahmed, Alauddin, et al.
Publicado: (2019) -
Prediction of the Ibuprofen Loading Capacity of MOFs by Machine Learning
por: Liu, Xujie, et al.
Publicado: (2022) -
Pd-doped HKUST-1 MOFs for enhanced hydrogen storage: effect of hydrogen spillover
por: Hu, Xiaoyu, et al.
Publicado: (2023)