Cargando…
Super-compression of large electron microscopy time series by deep compressive sensing learning
The development of ultrafast detectors for electron microscopy (EM) opens a new door to exploring dynamics of nanomaterials; however, it raises grand challenges for big data processing and storage. Here, we combine deep learning and temporal compressive sensing (TCS) to propose a novel EM big data c...
Autores principales: | Zheng, Siming, Wang, Chunyang, Yuan, Xin, Xin, Huolin L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276025/ https://www.ncbi.nlm.nih.gov/pubmed/34286306 http://dx.doi.org/10.1016/j.patter.2021.100292 |
Ejemplares similares
-
Infrared Image Super Resolution by Combining Compressive Sensing and Deep Learning
por: Zhang, Xudong, et al.
Publicado: (2018) -
Polarization Super-Resolution Imaging Method Based on Deep Compressed Sensing
por: Xu, Miao, et al.
Publicado: (2022) -
Electrostatic subframing and compressive-sensing video in transmission electron microscopy
por: Reed, B. W., et al.
Publicado: (2019) -
Progressive compressive sensing of large images with multiscale deep learning reconstruction
por: Kravets, Vladislav, et al.
Publicado: (2022) -
Deep Compressed Sensing for Learning Submodular Functions
por: Tsai, Yu-Chung, et al.
Publicado: (2020)