Cargando…
A machine learning framework to optimize optic nerve electrical stimulation for vision restoration
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural net...
Autores principales: | Romeni, Simone, Zoccolan, Davide, Micera, Silvestro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276026/ https://www.ncbi.nlm.nih.gov/pubmed/34286301 http://dx.doi.org/10.1016/j.patter.2021.100286 |
Ejemplares similares
-
A method to establish functional vagus nerve topography from electro-neurographic spontaneous activity
por: Pitzus, Andrea, et al.
Publicado: (2022) -
A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback
por: D’Anna, Edoardo, et al.
Publicado: (2017) -
Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial
por: Gall, Carolin, et al.
Publicado: (2016) -
Pre-Impact Fall Detection: Optimal Sensor Positioning Based on a Machine Learning Paradigm
por: Martelli, Dario, et al.
Publicado: (2014) -
Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions
por: Ottaviani, Matteo Maria, et al.
Publicado: (2022)