Cargando…

Graphene quantum Hall effect parallel resistance arrays

As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays...

Descripción completa

Detalles Bibliográficos
Autores principales: Panna, Alireza R., Hu, I-Fan, Kruskopf, Mattias, Patel, Dinesh K., Jarrett, Dean G., Liu, Chieh-I, Payagala, Shamith U., Saha, Dipanjan, Rigosi, Albert F., Newell, David B., Liang, Chi-Te, Elmquist, Randolph E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276113/
https://www.ncbi.nlm.nih.gov/pubmed/34263094
http://dx.doi.org/10.1103/physrevb.103.075408
_version_ 1783721850369474560
author Panna, Alireza R.
Hu, I-Fan
Kruskopf, Mattias
Patel, Dinesh K.
Jarrett, Dean G.
Liu, Chieh-I
Payagala, Shamith U.
Saha, Dipanjan
Rigosi, Albert F.
Newell, David B.
Liang, Chi-Te
Elmquist, Randolph E.
author_facet Panna, Alireza R.
Hu, I-Fan
Kruskopf, Mattias
Patel, Dinesh K.
Jarrett, Dean G.
Liu, Chieh-I
Payagala, Shamith U.
Saha, Dipanjan
Rigosi, Albert F.
Newell, David B.
Liang, Chi-Te
Elmquist, Randolph E.
author_sort Panna, Alireza R.
collection PubMed
description As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10(−8). Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry.
format Online
Article
Text
id pubmed-8276113
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-82761132021-07-13 Graphene quantum Hall effect parallel resistance arrays Panna, Alireza R. Hu, I-Fan Kruskopf, Mattias Patel, Dinesh K. Jarrett, Dean G. Liu, Chieh-I Payagala, Shamith U. Saha, Dipanjan Rigosi, Albert F. Newell, David B. Liang, Chi-Te Elmquist, Randolph E. Phys Rev B Article As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10(−8). Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry. 2021-02 /pmc/articles/PMC8276113/ /pubmed/34263094 http://dx.doi.org/10.1103/physrevb.103.075408 Text en https://creativecommons.org/licenses/by/4.0/Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Panna, Alireza R.
Hu, I-Fan
Kruskopf, Mattias
Patel, Dinesh K.
Jarrett, Dean G.
Liu, Chieh-I
Payagala, Shamith U.
Saha, Dipanjan
Rigosi, Albert F.
Newell, David B.
Liang, Chi-Te
Elmquist, Randolph E.
Graphene quantum Hall effect parallel resistance arrays
title Graphene quantum Hall effect parallel resistance arrays
title_full Graphene quantum Hall effect parallel resistance arrays
title_fullStr Graphene quantum Hall effect parallel resistance arrays
title_full_unstemmed Graphene quantum Hall effect parallel resistance arrays
title_short Graphene quantum Hall effect parallel resistance arrays
title_sort graphene quantum hall effect parallel resistance arrays
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276113/
https://www.ncbi.nlm.nih.gov/pubmed/34263094
http://dx.doi.org/10.1103/physrevb.103.075408
work_keys_str_mv AT pannaalirezar graphenequantumhalleffectparallelresistancearrays
AT huifan graphenequantumhalleffectparallelresistancearrays
AT kruskopfmattias graphenequantumhalleffectparallelresistancearrays
AT pateldineshk graphenequantumhalleffectparallelresistancearrays
AT jarrettdeang graphenequantumhalleffectparallelresistancearrays
AT liuchiehi graphenequantumhalleffectparallelresistancearrays
AT payagalashamithu graphenequantumhalleffectparallelresistancearrays
AT sahadipanjan graphenequantumhalleffectparallelresistancearrays
AT rigosialbertf graphenequantumhalleffectparallelresistancearrays
AT newelldavidb graphenequantumhalleffectparallelresistancearrays
AT liangchite graphenequantumhalleffectparallelresistancearrays
AT elmquistrandolphe graphenequantumhalleffectparallelresistancearrays