Cargando…
Graphene quantum Hall effect parallel resistance arrays
As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276113/ https://www.ncbi.nlm.nih.gov/pubmed/34263094 http://dx.doi.org/10.1103/physrevb.103.075408 |
_version_ | 1783721850369474560 |
---|---|
author | Panna, Alireza R. Hu, I-Fan Kruskopf, Mattias Patel, Dinesh K. Jarrett, Dean G. Liu, Chieh-I Payagala, Shamith U. Saha, Dipanjan Rigosi, Albert F. Newell, David B. Liang, Chi-Te Elmquist, Randolph E. |
author_facet | Panna, Alireza R. Hu, I-Fan Kruskopf, Mattias Patel, Dinesh K. Jarrett, Dean G. Liu, Chieh-I Payagala, Shamith U. Saha, Dipanjan Rigosi, Albert F. Newell, David B. Liang, Chi-Te Elmquist, Randolph E. |
author_sort | Panna, Alireza R. |
collection | PubMed |
description | As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10(−8). Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry. |
format | Online Article Text |
id | pubmed-8276113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-82761132021-07-13 Graphene quantum Hall effect parallel resistance arrays Panna, Alireza R. Hu, I-Fan Kruskopf, Mattias Patel, Dinesh K. Jarrett, Dean G. Liu, Chieh-I Payagala, Shamith U. Saha, Dipanjan Rigosi, Albert F. Newell, David B. Liang, Chi-Te Elmquist, Randolph E. Phys Rev B Article As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10(−8). Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry. 2021-02 /pmc/articles/PMC8276113/ /pubmed/34263094 http://dx.doi.org/10.1103/physrevb.103.075408 Text en https://creativecommons.org/licenses/by/4.0/Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Panna, Alireza R. Hu, I-Fan Kruskopf, Mattias Patel, Dinesh K. Jarrett, Dean G. Liu, Chieh-I Payagala, Shamith U. Saha, Dipanjan Rigosi, Albert F. Newell, David B. Liang, Chi-Te Elmquist, Randolph E. Graphene quantum Hall effect parallel resistance arrays |
title | Graphene quantum Hall effect parallel resistance arrays |
title_full | Graphene quantum Hall effect parallel resistance arrays |
title_fullStr | Graphene quantum Hall effect parallel resistance arrays |
title_full_unstemmed | Graphene quantum Hall effect parallel resistance arrays |
title_short | Graphene quantum Hall effect parallel resistance arrays |
title_sort | graphene quantum hall effect parallel resistance arrays |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276113/ https://www.ncbi.nlm.nih.gov/pubmed/34263094 http://dx.doi.org/10.1103/physrevb.103.075408 |
work_keys_str_mv | AT pannaalirezar graphenequantumhalleffectparallelresistancearrays AT huifan graphenequantumhalleffectparallelresistancearrays AT kruskopfmattias graphenequantumhalleffectparallelresistancearrays AT pateldineshk graphenequantumhalleffectparallelresistancearrays AT jarrettdeang graphenequantumhalleffectparallelresistancearrays AT liuchiehi graphenequantumhalleffectparallelresistancearrays AT payagalashamithu graphenequantumhalleffectparallelresistancearrays AT sahadipanjan graphenequantumhalleffectparallelresistancearrays AT rigosialbertf graphenequantumhalleffectparallelresistancearrays AT newelldavidb graphenequantumhalleffectparallelresistancearrays AT liangchite graphenequantumhalleffectparallelresistancearrays AT elmquistrandolphe graphenequantumhalleffectparallelresistancearrays |