Cargando…
Holdout-Based Empirical Assessment of Mixed-Type Synthetic Data
AI-based data synthesis has seen rapid progress over the last several years and is increasingly recognized for its promise to enable privacy-respecting high-fidelity data sharing. This is reflected by the growing availability of both commercial and open-sourced software solutions for synthesizing pr...
Autores principales: | Platzer, Michael, Reutterer, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276128/ https://www.ncbi.nlm.nih.gov/pubmed/34268491 http://dx.doi.org/10.3389/fdata.2021.679939 |
Ejemplares similares
-
Synthetic biomedical data generation in support of In Silico Clinical Trials
por: Simalatsar, Alena
Publicado: (2023) -
Data Consistency for Data-Driven Smart Energy Assessment
por: Chicco, Gianfranco
Publicado: (2021) -
Characterizing the last holdouts
por: Stewart, Erin L., et al.
Publicado: (2017) -
Including Vulnerable Populations in the Assessment of Data From Vulnerable Populations
por: Jackson, Latifa, et al.
Publicado: (2019) -
Commentary: A robust data-driven approach identifies four personality types across four large data sets
por: Katahira, Kentaro, et al.
Publicado: (2020)