Cargando…
Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik
Stress and its complex effects have been researched since the beginning of the 20th century. The manifold psychological and physical stressors in the world of work can, in sum, lead to disorders of the organism and to illness. Since the physical and subjective consequences of stress vary individuall...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276219/ https://www.ncbi.nlm.nih.gov/pubmed/34276123 http://dx.doi.org/10.1007/s41449-021-00263-w |
_version_ | 1783721863383351296 |
---|---|
author | Foot, Hermann Mättig, Benedikt Fiolka, Michael Grylewicz, Tim ten Hompel, Michael Kretschmer, Veronika |
author_facet | Foot, Hermann Mättig, Benedikt Fiolka, Michael Grylewicz, Tim ten Hompel, Michael Kretschmer, Veronika |
author_sort | Foot, Hermann |
collection | PubMed |
description | Stress and its complex effects have been researched since the beginning of the 20th century. The manifold psychological and physical stressors in the world of work can, in sum, lead to disorders of the organism and to illness. Since the physical and subjective consequences of stress vary individually, no absolute threshold values can be determined. Machine learning (ML) methods are used in this article to research the systematic recognition of patterns of physiological and subjective stress parameters and to predict stress. The logistics sector serves as a practical application case in which stress factors are often rooted in the activity and work organisation. One design element of the prevention of stress is the work break. ML methods are used to investigate the extent to which stress can be predicted on the basis of physiological and subjective parameters in order to recommend breaks individually. The article presents the interim status of a software solution for dynamic break management for logistics. Practical Relevance: The aim of the software solution “Dynamic Break” is to preventively prevent stress resulting from mental and physical stress factors in logistics and to keep employees healthy, satisfied, fit for work and productive in the long term. Individualized rest breaks as a design element can support companies in deploying human resources more flexibly in line with the dynamic requirements of logistics. |
format | Online Article Text |
id | pubmed-8276219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-82762192021-07-14 Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik Foot, Hermann Mättig, Benedikt Fiolka, Michael Grylewicz, Tim ten Hompel, Michael Kretschmer, Veronika Z Arbeitswiss Wissenschaftliche Beiträge Stress and its complex effects have been researched since the beginning of the 20th century. The manifold psychological and physical stressors in the world of work can, in sum, lead to disorders of the organism and to illness. Since the physical and subjective consequences of stress vary individually, no absolute threshold values can be determined. Machine learning (ML) methods are used in this article to research the systematic recognition of patterns of physiological and subjective stress parameters and to predict stress. The logistics sector serves as a practical application case in which stress factors are often rooted in the activity and work organisation. One design element of the prevention of stress is the work break. ML methods are used to investigate the extent to which stress can be predicted on the basis of physiological and subjective parameters in order to recommend breaks individually. The article presents the interim status of a software solution for dynamic break management for logistics. Practical Relevance: The aim of the software solution “Dynamic Break” is to preventively prevent stress resulting from mental and physical stress factors in logistics and to keep employees healthy, satisfied, fit for work and productive in the long term. Individualized rest breaks as a design element can support companies in deploying human resources more flexibly in line with the dynamic requirements of logistics. Springer Berlin Heidelberg 2021-07-13 2021 /pmc/articles/PMC8276219/ /pubmed/34276123 http://dx.doi.org/10.1007/s41449-021-00263-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Wissenschaftliche Beiträge Foot, Hermann Mättig, Benedikt Fiolka, Michael Grylewicz, Tim ten Hompel, Michael Kretschmer, Veronika Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik |
title | Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik |
title_full | Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik |
title_fullStr | Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik |
title_full_unstemmed | Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik |
title_short | Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik |
title_sort | einsatz von maschinellem lernen für die vorhersage von stress am beispiel der logistik |
topic | Wissenschaftliche Beiträge |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276219/ https://www.ncbi.nlm.nih.gov/pubmed/34276123 http://dx.doi.org/10.1007/s41449-021-00263-w |
work_keys_str_mv | AT foothermann einsatzvonmaschinellemlernenfurdievorhersagevonstressambeispielderlogistik AT mattigbenedikt einsatzvonmaschinellemlernenfurdievorhersagevonstressambeispielderlogistik AT fiolkamichael einsatzvonmaschinellemlernenfurdievorhersagevonstressambeispielderlogistik AT grylewicztim einsatzvonmaschinellemlernenfurdievorhersagevonstressambeispielderlogistik AT tenhompelmichael einsatzvonmaschinellemlernenfurdievorhersagevonstressambeispielderlogistik AT kretschmerveronika einsatzvonmaschinellemlernenfurdievorhersagevonstressambeispielderlogistik |