Cargando…
Selective Crystallization of d-Mannitol Polymorphs Using Surfactant Self-Assembly
[Image: see text] Selective crystallization of polymorphs is highly sought after in industrial practice. Yet, state-of-the-art techniques either use laboriously engineered solid surfaces or strenuously prepared heteronucleants. We propose an approach where surfactants in solution self-assemble effor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276574/ https://www.ncbi.nlm.nih.gov/pubmed/34276257 http://dx.doi.org/10.1021/acs.cgd.1c00243 |
Sumario: | [Image: see text] Selective crystallization of polymorphs is highly sought after in industrial practice. Yet, state-of-the-art techniques either use laboriously engineered solid surfaces or strenuously prepared heteronucleants. We propose an approach where surfactants in solution self-assemble effortlessly into mesoscopic structures dictating the polymorphic outcome of the target solute. Sodium dodecyl sulfate (SDS) surfactant is used as a tailored additive to crystallize different polymorphic forms of a model active pharmaceutical ingredient, d-mannitol. Different mesoscopic phases of SDS template particular polymorphs: packed monolayers, micelles, and crystals favored the β, α, and δ forms of d-mannitol, respectively. A synergistic effect of topological templating and molecular interactions is proposed as the rationale behind the observed selective crystallization of polymorphs. This crystal engineering technique suggests that surfactant self-assemblies can be used as tailored templates for polymorphic control. |
---|