Cargando…
Correcting data imbalance for semi-supervised COVID-19 detection using X-ray chest images
A key factor in the fight against viral diseases such as the coronavirus (COVID-19) is the identification of virus carriers as early and quickly as possible, in a cheap and efficient manner. The application of deep learning for image classification of chest X-ray images of COVID-19 patients could be...
Autores principales: | Calderon-Ramirez, Saul, Yang, Shengxiang, Moemeni, Armaghan, Elizondo, David, Colreavy-Donnelly, Simon, Chavarría-Estrada, Luis Fernando, Molina-Cabello, Miguel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276579/ https://www.ncbi.nlm.nih.gov/pubmed/34276263 http://dx.doi.org/10.1016/j.asoc.2021.107692 |
Ejemplares similares
-
Dealing with distribution mismatch in semi-supervised deep learning for COVID-19 detection using chest X-ray images: A novel approach using feature densities
por: Calderon-Ramirez, Saul, et al.
Publicado: (2022) -
A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica
por: Calderon-Ramirez, Saul, et al.
Publicado: (2022) -
Potential diagnosis of COVID-19 from chest X-ray and CT findings using semi-supervised learning
por: Sahoo, Pracheta, et al.
Publicado: (2021) -
Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images
Publicado: (2021) -
SODA: Detecting COVID-19 in Chest X-Rays With Semi-Supervised Open Set Domain Adaptation: (Invited Paper)
Publicado: (2021)