Cargando…

Fast covariance estimation for multivariate sparse functional data

Covariance estimation is essential yet underdeveloped for analysing multivariate functional data. We propose a fast covariance estimation method for multivariate sparse functional data using bivariate penalized splines. The tensor‐product B‐spline formulation of the proposed method enables a simple...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Cai, Xiao, Luo, Luo, Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276768/
https://www.ncbi.nlm.nih.gov/pubmed/34262756
http://dx.doi.org/10.1002/sta4.245
_version_ 1783721963438473216
author Li, Cai
Xiao, Luo
Luo, Sheng
author_facet Li, Cai
Xiao, Luo
Luo, Sheng
author_sort Li, Cai
collection PubMed
description Covariance estimation is essential yet underdeveloped for analysing multivariate functional data. We propose a fast covariance estimation method for multivariate sparse functional data using bivariate penalized splines. The tensor‐product B‐spline formulation of the proposed method enables a simple spectral decomposition of the associated covariance operator and explicit expressions of the resulting eigenfunctions as linear combinations of B‐spline bases, thereby dramatically facilitating subsequent principal component analysis. We derive a fast algorithm for selecting the smoothing parameters in covariance smoothing using leave‐one‐subject‐out cross‐validation. The method is evaluated with extensive numerical studies and applied to an Alzheimer's disease study with multiple longitudinal outcomes.
format Online
Article
Text
id pubmed-8276768
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-82767682021-07-13 Fast covariance estimation for multivariate sparse functional data Li, Cai Xiao, Luo Luo, Sheng Stat (Int Stat Inst) Original Articles Covariance estimation is essential yet underdeveloped for analysing multivariate functional data. We propose a fast covariance estimation method for multivariate sparse functional data using bivariate penalized splines. The tensor‐product B‐spline formulation of the proposed method enables a simple spectral decomposition of the associated covariance operator and explicit expressions of the resulting eigenfunctions as linear combinations of B‐spline bases, thereby dramatically facilitating subsequent principal component analysis. We derive a fast algorithm for selecting the smoothing parameters in covariance smoothing using leave‐one‐subject‐out cross‐validation. The method is evaluated with extensive numerical studies and applied to an Alzheimer's disease study with multiple longitudinal outcomes. John Wiley and Sons Inc. 2020-06-17 2020-12 /pmc/articles/PMC8276768/ /pubmed/34262756 http://dx.doi.org/10.1002/sta4.245 Text en © 2019 The Authors Stat Published by John Wiley & Sons Ltd https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Li, Cai
Xiao, Luo
Luo, Sheng
Fast covariance estimation for multivariate sparse functional data
title Fast covariance estimation for multivariate sparse functional data
title_full Fast covariance estimation for multivariate sparse functional data
title_fullStr Fast covariance estimation for multivariate sparse functional data
title_full_unstemmed Fast covariance estimation for multivariate sparse functional data
title_short Fast covariance estimation for multivariate sparse functional data
title_sort fast covariance estimation for multivariate sparse functional data
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276768/
https://www.ncbi.nlm.nih.gov/pubmed/34262756
http://dx.doi.org/10.1002/sta4.245
work_keys_str_mv AT licai fastcovarianceestimationformultivariatesparsefunctionaldata
AT xiaoluo fastcovarianceestimationformultivariatesparsefunctionaldata
AT luosheng fastcovarianceestimationformultivariatesparsefunctionaldata