Cargando…
Fast covariance estimation for multivariate sparse functional data
Covariance estimation is essential yet underdeveloped for analysing multivariate functional data. We propose a fast covariance estimation method for multivariate sparse functional data using bivariate penalized splines. The tensor‐product B‐spline formulation of the proposed method enables a simple...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276768/ https://www.ncbi.nlm.nih.gov/pubmed/34262756 http://dx.doi.org/10.1002/sta4.245 |
_version_ | 1783721963438473216 |
---|---|
author | Li, Cai Xiao, Luo Luo, Sheng |
author_facet | Li, Cai Xiao, Luo Luo, Sheng |
author_sort | Li, Cai |
collection | PubMed |
description | Covariance estimation is essential yet underdeveloped for analysing multivariate functional data. We propose a fast covariance estimation method for multivariate sparse functional data using bivariate penalized splines. The tensor‐product B‐spline formulation of the proposed method enables a simple spectral decomposition of the associated covariance operator and explicit expressions of the resulting eigenfunctions as linear combinations of B‐spline bases, thereby dramatically facilitating subsequent principal component analysis. We derive a fast algorithm for selecting the smoothing parameters in covariance smoothing using leave‐one‐subject‐out cross‐validation. The method is evaluated with extensive numerical studies and applied to an Alzheimer's disease study with multiple longitudinal outcomes. |
format | Online Article Text |
id | pubmed-8276768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82767682021-07-13 Fast covariance estimation for multivariate sparse functional data Li, Cai Xiao, Luo Luo, Sheng Stat (Int Stat Inst) Original Articles Covariance estimation is essential yet underdeveloped for analysing multivariate functional data. We propose a fast covariance estimation method for multivariate sparse functional data using bivariate penalized splines. The tensor‐product B‐spline formulation of the proposed method enables a simple spectral decomposition of the associated covariance operator and explicit expressions of the resulting eigenfunctions as linear combinations of B‐spline bases, thereby dramatically facilitating subsequent principal component analysis. We derive a fast algorithm for selecting the smoothing parameters in covariance smoothing using leave‐one‐subject‐out cross‐validation. The method is evaluated with extensive numerical studies and applied to an Alzheimer's disease study with multiple longitudinal outcomes. John Wiley and Sons Inc. 2020-06-17 2020-12 /pmc/articles/PMC8276768/ /pubmed/34262756 http://dx.doi.org/10.1002/sta4.245 Text en © 2019 The Authors Stat Published by John Wiley & Sons Ltd https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Li, Cai Xiao, Luo Luo, Sheng Fast covariance estimation for multivariate sparse functional data |
title | Fast covariance estimation for multivariate sparse functional data |
title_full | Fast covariance estimation for multivariate sparse functional data |
title_fullStr | Fast covariance estimation for multivariate sparse functional data |
title_full_unstemmed | Fast covariance estimation for multivariate sparse functional data |
title_short | Fast covariance estimation for multivariate sparse functional data |
title_sort | fast covariance estimation for multivariate sparse functional data |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276768/ https://www.ncbi.nlm.nih.gov/pubmed/34262756 http://dx.doi.org/10.1002/sta4.245 |
work_keys_str_mv | AT licai fastcovarianceestimationformultivariatesparsefunctionaldata AT xiaoluo fastcovarianceestimationformultivariatesparsefunctionaldata AT luosheng fastcovarianceestimationformultivariatesparsefunctionaldata |