Cargando…
Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.)
Malnutrition a health disorders arising due to over or low use of minerals, vitamins and nutritional substances required for proper functioning of body tissues and organs. Zinc (Zn) is the most important mineral required for the normal metabolism of plants and humans. Zinc-deficiency is one of the m...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277021/ https://www.ncbi.nlm.nih.gov/pubmed/34255800 http://dx.doi.org/10.1371/journal.pone.0254647 |
_version_ | 1783722001428381696 |
---|---|
author | Bashir, Safdar Basit, Abdul Abbas, Rana Nadeem Naeem, Shahbaz Bashir, Saqib Ahmed, Niaz Ahmed, Muhammad Saeed Ilyas, Muhammad Zahaib Aslam, Zubair Alotaibi, Saqer S. El-Shehawi, Ahmed M. Li, Yunzhou |
author_facet | Bashir, Safdar Basit, Abdul Abbas, Rana Nadeem Naeem, Shahbaz Bashir, Saqib Ahmed, Niaz Ahmed, Muhammad Saeed Ilyas, Muhammad Zahaib Aslam, Zubair Alotaibi, Saqer S. El-Shehawi, Ahmed M. Li, Yunzhou |
author_sort | Bashir, Safdar |
collection | PubMed |
description | Malnutrition a health disorders arising due to over or low use of minerals, vitamins and nutritional substances required for proper functioning of body tissues and organs. Zinc (Zn) is the most important mineral required for the normal metabolism of plants and humans. Zinc-deficiency is one of the major cause of malnutrition globally. Maize is highly susceptible to Zn-deficiency and inflicts Zn-deficiency to humans and other animals being nourished on it. This study evaluated the effect of zinc-lysine chelate alone (0.1, 0.5, 1.0 and 1.5%) as seed priming and in combination with Zn-solubilizing bacteria (PMEL-1, PMEL-48, PMEL-57and PMEL-71)) on grain biofortification of autumn maize. The Zn accumulation in different parts (roots, stem, leaves, grains and cob pith) was quantified. Results indicated that Zn contents were 18.5% higher in the seeds primed with 1.5% solution of Zn-lysine chelate and inoculation of ZSB strains compared to control treatments. Seed priming with 1.5% Zn-lysine chelate in combination with ZSB inoculation significantly improved cob diameter and cob length by 16.75% and 42% during 2016 and by 11.36% and 34.35% during 2017. The increase in 100 grains weight over control was 18.4% and 15.27% for 2016 and 2017, respectively. The Zn contents were increased by 15.3%, 15.6%, 49.1%, and 33.0% in grain, cob-pith, stemand roots, respectively compared from control. Thus, the combined application of 1.5% Zn-lysine chelates along with ZSB inoculation could be used for combating malnutrition. |
format | Online Article Text |
id | pubmed-8277021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82770212021-07-20 Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) Bashir, Safdar Basit, Abdul Abbas, Rana Nadeem Naeem, Shahbaz Bashir, Saqib Ahmed, Niaz Ahmed, Muhammad Saeed Ilyas, Muhammad Zahaib Aslam, Zubair Alotaibi, Saqer S. El-Shehawi, Ahmed M. Li, Yunzhou PLoS One Research Article Malnutrition a health disorders arising due to over or low use of minerals, vitamins and nutritional substances required for proper functioning of body tissues and organs. Zinc (Zn) is the most important mineral required for the normal metabolism of plants and humans. Zinc-deficiency is one of the major cause of malnutrition globally. Maize is highly susceptible to Zn-deficiency and inflicts Zn-deficiency to humans and other animals being nourished on it. This study evaluated the effect of zinc-lysine chelate alone (0.1, 0.5, 1.0 and 1.5%) as seed priming and in combination with Zn-solubilizing bacteria (PMEL-1, PMEL-48, PMEL-57and PMEL-71)) on grain biofortification of autumn maize. The Zn accumulation in different parts (roots, stem, leaves, grains and cob pith) was quantified. Results indicated that Zn contents were 18.5% higher in the seeds primed with 1.5% solution of Zn-lysine chelate and inoculation of ZSB strains compared to control treatments. Seed priming with 1.5% Zn-lysine chelate in combination with ZSB inoculation significantly improved cob diameter and cob length by 16.75% and 42% during 2016 and by 11.36% and 34.35% during 2017. The increase in 100 grains weight over control was 18.4% and 15.27% for 2016 and 2017, respectively. The Zn contents were increased by 15.3%, 15.6%, 49.1%, and 33.0% in grain, cob-pith, stemand roots, respectively compared from control. Thus, the combined application of 1.5% Zn-lysine chelates along with ZSB inoculation could be used for combating malnutrition. Public Library of Science 2021-07-13 /pmc/articles/PMC8277021/ /pubmed/34255800 http://dx.doi.org/10.1371/journal.pone.0254647 Text en © 2021 Bashir et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bashir, Safdar Basit, Abdul Abbas, Rana Nadeem Naeem, Shahbaz Bashir, Saqib Ahmed, Niaz Ahmed, Muhammad Saeed Ilyas, Muhammad Zahaib Aslam, Zubair Alotaibi, Saqer S. El-Shehawi, Ahmed M. Li, Yunzhou Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) |
title | Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) |
title_full | Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) |
title_fullStr | Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) |
title_full_unstemmed | Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) |
title_short | Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.) |
title_sort | combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (zea mays l.) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277021/ https://www.ncbi.nlm.nih.gov/pubmed/34255800 http://dx.doi.org/10.1371/journal.pone.0254647 |
work_keys_str_mv | AT bashirsafdar combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT basitabdul combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT abbasrananadeem combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT naeemshahbaz combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT bashirsaqib combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT ahmedniaz combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT ahmedmuhammadsaeed combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT ilyasmuhammadzahaib combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT aslamzubair combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT alotaibisaqers combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT elshehawiahmedm combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl AT liyunzhou combinedapplicationofzinclysinechelateandzincsolubilizingbacteriaimprovesyieldandgrainbiofortificationofmaizezeamaysl |