Cargando…
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation
As a powerful tool in hyperspectral image (HSI) classification, sparse representation has gained much attention in recent years owing to its detailed representation of features. In particular, the results of the joint use of spatial and spectral information has been widely applied to HSI classificat...
Autores principales: | Chen, Eryang, Chang, Ruichun, Guo, Ke, Miao, Fang, Shi, Kaibo, Ye, Ansheng, Yuan, Jianghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277050/ https://www.ncbi.nlm.nih.gov/pubmed/34255786 http://dx.doi.org/10.1371/journal.pone.0254362 |
Ejemplares similares
-
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
por: Yu, Haoyang, et al.
Publicado: (2018) -
Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
por: Jia, Xiangxiang, et al.
Publicado: (2022) -
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015)