Cargando…
Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data
Clustering high-dimensional data, such as images or biological measurements, is a long-standing problem and has been studied extensively. Recently, Deep Clustering has gained popularity due to its flexibility in fitting the specific peculiarities of complex data. Here we introduce the Mixture-of-Exp...
Autores principales: | Kopf, Andreas, Fortuin, Vincent, Somnath, Vignesh Ram, Claassen, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277074/ https://www.ncbi.nlm.nih.gov/pubmed/34191792 http://dx.doi.org/10.1371/journal.pcbi.1009086 |
Ejemplares similares
-
Latent representation learning in biology and translational medicine
por: Kopf, Andreas, et al.
Publicado: (2021) -
Variational autoencoders learn transferrable representations of metabolomics data
por: Gomari, Daniel P., et al.
Publicado: (2022) -
Multi-Gate Mixture-of-Experts Stacked Autoencoders
for Quality Prediction in Blast Furnace Ironmaking
por: Zhu, Hongyu, et al.
Publicado: (2022) -
Variational Autoencoder for Generation of Antimicrobial
Peptides
por: Dean, Scott N., et al.
Publicado: (2020) -
Representation learning of resting state fMRI with variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2021)