Cargando…

Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures

[Image: see text] The sol–gel synthesis of iron carbide (Fe(3)C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeO(x)) and iron nitride (Fe(3)N). The control of particle size is challenging, and most methods produce polydisperse Fe(3)C nanoparticles o...

Descripción completa

Detalles Bibliográficos
Autores principales: Chambers, Matthew S., Keeble, Dean S., Fletcher, Dean, Hriljac, Joseph A., Schnepp, Zoe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277138/
https://www.ncbi.nlm.nih.gov/pubmed/33944556
http://dx.doi.org/10.1021/acs.inorgchem.0c03692
_version_ 1783722022080086016
author Chambers, Matthew S.
Keeble, Dean S.
Fletcher, Dean
Hriljac, Joseph A.
Schnepp, Zoe
author_facet Chambers, Matthew S.
Keeble, Dean S.
Fletcher, Dean
Hriljac, Joseph A.
Schnepp, Zoe
author_sort Chambers, Matthew S.
collection PubMed
description [Image: see text] The sol–gel synthesis of iron carbide (Fe(3)C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeO(x)) and iron nitride (Fe(3)N). The control of particle size is challenging, and most methods produce polydisperse Fe(3)C nanoparticles of 20–100 nm in diameter. Given the wide range of applications of Fe(3)C nanoparticles, it is essential that we understand the evolution of the system during the synthesis. Here, we report an in situ synchrotron total scattering study of the formation of Fe(3)C from gelatin and iron nitrate sol–gel precursors. A pair distribution function analysis reveals a dramatic increase in local ordering between 300 and 350 °C, indicating rapid nucleation and growth of iron oxide nanoparticles. The oxide intermediate remains stable until the emergence of Fe(3)N at 600 °C. Structural refinement of the high-temperature data revealed local distortion of the NFe(6) octahedra, resulting in a change in the twist angle suggestive of a carbonitride intermediate. This work demonstrates the importance of intermediate phases in controlling the particle size of a sol–gel product. It is also, to the best of our knowledge, the first example of in situ total scattering analysis of a sol–gel system.
format Online
Article
Text
id pubmed-8277138
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-82771382021-07-14 Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures Chambers, Matthew S. Keeble, Dean S. Fletcher, Dean Hriljac, Joseph A. Schnepp, Zoe Inorg Chem [Image: see text] The sol–gel synthesis of iron carbide (Fe(3)C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeO(x)) and iron nitride (Fe(3)N). The control of particle size is challenging, and most methods produce polydisperse Fe(3)C nanoparticles of 20–100 nm in diameter. Given the wide range of applications of Fe(3)C nanoparticles, it is essential that we understand the evolution of the system during the synthesis. Here, we report an in situ synchrotron total scattering study of the formation of Fe(3)C from gelatin and iron nitrate sol–gel precursors. A pair distribution function analysis reveals a dramatic increase in local ordering between 300 and 350 °C, indicating rapid nucleation and growth of iron oxide nanoparticles. The oxide intermediate remains stable until the emergence of Fe(3)N at 600 °C. Structural refinement of the high-temperature data revealed local distortion of the NFe(6) octahedra, resulting in a change in the twist angle suggestive of a carbonitride intermediate. This work demonstrates the importance of intermediate phases in controlling the particle size of a sol–gel product. It is also, to the best of our knowledge, the first example of in situ total scattering analysis of a sol–gel system. American Chemical Society 2021-05-04 2021-05-17 /pmc/articles/PMC8277138/ /pubmed/33944556 http://dx.doi.org/10.1021/acs.inorgchem.0c03692 Text en © 2021 The Authors. Published byAmerican Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Chambers, Matthew S.
Keeble, Dean S.
Fletcher, Dean
Hriljac, Joseph A.
Schnepp, Zoe
Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
title Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
title_full Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
title_fullStr Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
title_full_unstemmed Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
title_short Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
title_sort evolution of the local structure in the sol–gel synthesis of fe(3)c nanostructures
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277138/
https://www.ncbi.nlm.nih.gov/pubmed/33944556
http://dx.doi.org/10.1021/acs.inorgchem.0c03692
work_keys_str_mv AT chambersmatthews evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures
AT keebledeans evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures
AT fletcherdean evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures
AT hriljacjosepha evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures
AT schneppzoe evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures