Cargando…
Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures
[Image: see text] The sol–gel synthesis of iron carbide (Fe(3)C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeO(x)) and iron nitride (Fe(3)N). The control of particle size is challenging, and most methods produce polydisperse Fe(3)C nanoparticles o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277138/ https://www.ncbi.nlm.nih.gov/pubmed/33944556 http://dx.doi.org/10.1021/acs.inorgchem.0c03692 |
_version_ | 1783722022080086016 |
---|---|
author | Chambers, Matthew S. Keeble, Dean S. Fletcher, Dean Hriljac, Joseph A. Schnepp, Zoe |
author_facet | Chambers, Matthew S. Keeble, Dean S. Fletcher, Dean Hriljac, Joseph A. Schnepp, Zoe |
author_sort | Chambers, Matthew S. |
collection | PubMed |
description | [Image: see text] The sol–gel synthesis of iron carbide (Fe(3)C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeO(x)) and iron nitride (Fe(3)N). The control of particle size is challenging, and most methods produce polydisperse Fe(3)C nanoparticles of 20–100 nm in diameter. Given the wide range of applications of Fe(3)C nanoparticles, it is essential that we understand the evolution of the system during the synthesis. Here, we report an in situ synchrotron total scattering study of the formation of Fe(3)C from gelatin and iron nitrate sol–gel precursors. A pair distribution function analysis reveals a dramatic increase in local ordering between 300 and 350 °C, indicating rapid nucleation and growth of iron oxide nanoparticles. The oxide intermediate remains stable until the emergence of Fe(3)N at 600 °C. Structural refinement of the high-temperature data revealed local distortion of the NFe(6) octahedra, resulting in a change in the twist angle suggestive of a carbonitride intermediate. This work demonstrates the importance of intermediate phases in controlling the particle size of a sol–gel product. It is also, to the best of our knowledge, the first example of in situ total scattering analysis of a sol–gel system. |
format | Online Article Text |
id | pubmed-8277138 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-82771382021-07-14 Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures Chambers, Matthew S. Keeble, Dean S. Fletcher, Dean Hriljac, Joseph A. Schnepp, Zoe Inorg Chem [Image: see text] The sol–gel synthesis of iron carbide (Fe(3)C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeO(x)) and iron nitride (Fe(3)N). The control of particle size is challenging, and most methods produce polydisperse Fe(3)C nanoparticles of 20–100 nm in diameter. Given the wide range of applications of Fe(3)C nanoparticles, it is essential that we understand the evolution of the system during the synthesis. Here, we report an in situ synchrotron total scattering study of the formation of Fe(3)C from gelatin and iron nitrate sol–gel precursors. A pair distribution function analysis reveals a dramatic increase in local ordering between 300 and 350 °C, indicating rapid nucleation and growth of iron oxide nanoparticles. The oxide intermediate remains stable until the emergence of Fe(3)N at 600 °C. Structural refinement of the high-temperature data revealed local distortion of the NFe(6) octahedra, resulting in a change in the twist angle suggestive of a carbonitride intermediate. This work demonstrates the importance of intermediate phases in controlling the particle size of a sol–gel product. It is also, to the best of our knowledge, the first example of in situ total scattering analysis of a sol–gel system. American Chemical Society 2021-05-04 2021-05-17 /pmc/articles/PMC8277138/ /pubmed/33944556 http://dx.doi.org/10.1021/acs.inorgchem.0c03692 Text en © 2021 The Authors. Published byAmerican Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Chambers, Matthew S. Keeble, Dean S. Fletcher, Dean Hriljac, Joseph A. Schnepp, Zoe Evolution of the Local Structure in the Sol–Gel Synthesis of Fe(3)C Nanostructures |
title | Evolution of the Local Structure in the Sol–Gel
Synthesis of Fe(3)C Nanostructures |
title_full | Evolution of the Local Structure in the Sol–Gel
Synthesis of Fe(3)C Nanostructures |
title_fullStr | Evolution of the Local Structure in the Sol–Gel
Synthesis of Fe(3)C Nanostructures |
title_full_unstemmed | Evolution of the Local Structure in the Sol–Gel
Synthesis of Fe(3)C Nanostructures |
title_short | Evolution of the Local Structure in the Sol–Gel
Synthesis of Fe(3)C Nanostructures |
title_sort | evolution of the local structure in the sol–gel
synthesis of fe(3)c nanostructures |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277138/ https://www.ncbi.nlm.nih.gov/pubmed/33944556 http://dx.doi.org/10.1021/acs.inorgchem.0c03692 |
work_keys_str_mv | AT chambersmatthews evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures AT keebledeans evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures AT fletcherdean evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures AT hriljacjosepha evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures AT schneppzoe evolutionofthelocalstructureinthesolgelsynthesisoffe3cnanostructures |