Cargando…
Machine Learning Analysis to Identify Digital Behavioral Phenotypes for Engagement and Health Outcome Efficacy of an mHealth Intervention for Obesity: Randomized Controlled Trial
BACKGROUND: The digital health care community has been urged to enhance engagement and clinical outcomes by analyzing multidimensional digital phenotypes. OBJECTIVE: This study aims to use a machine learning approach to investigate the performance of multivariate phenotypes in predicting the engagem...
Autores principales: | Kim, Meelim, Yang, Jaeyeong, Ahn, Woo-Young, Choi, Hyung Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277339/ https://www.ncbi.nlm.nih.gov/pubmed/34184991 http://dx.doi.org/10.2196/27218 |
Ejemplares similares
-
Exploring the Effect of the Dynamics of Behavioral Phenotypes on Health Outcomes in an mHealth Intervention for Childhood Obesity: Longitudinal Observational Study
por: Woo, Sarah, et al.
Publicado: (2023) -
Measuring Engagement in eHealth and mHealth Behavior Change Interventions: Viewpoint of Methodologies
por: Short, Camille E, et al.
Publicado: (2018) -
Digital Therapeutics for Obesity and Eating-Related Problems
por: Kim, Meelim, et al.
Publicado: (2021) -
Who uses mHealth apps? Identifying user archetypes of mHealth
apps
por: Aziz, Maryam, et al.
Publicado: (2023) -
Digital encounters: Human interactions in mHealth behavior change interventions
por: Müssener, Ulrika
Publicado: (2021)