Cargando…

Mobile Apps for Drug–Drug Interaction Checks in Chinese App Stores: Systematic Review and Content Analysis

BACKGROUND: As a computerized drug–drug interaction (DDI) alert system has not been widely implemented in China, health care providers are relying on mobile health (mHealth) apps as references for checking drug information, including DDIs. OBJECTIVE: The main objective of this study was to evaluate...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Chunying, Jiang, Bin, Yang, Qilian, Wang, Chengnan, Lu, Kevin Z, Gu, Meng, Yuan, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277361/
https://www.ncbi.nlm.nih.gov/pubmed/33962910
http://dx.doi.org/10.2196/26262
Descripción
Sumario:BACKGROUND: As a computerized drug–drug interaction (DDI) alert system has not been widely implemented in China, health care providers are relying on mobile health (mHealth) apps as references for checking drug information, including DDIs. OBJECTIVE: The main objective of this study was to evaluate the quality and content of mHealth apps supporting DDI checking in Chinese app stores. METHODS: A systematic review was carried out in November 2020 to identify mHealth apps providing DDI checking in both Chinese iOS and Android platforms. We extracted the apps’ general information (including the developer, operating system, costs, release date, size, number of downloads, and average rating), scientific or clinical basis, and accountability, based on a multidimensional framework for evaluation of apps. The quality of mHealth apps was evaluated by using the Mobile App Rating Scale (MARS). Descriptive statistics, including numbers and percentages, were calculated to describe the characteristics of the apps. For each app selected for evaluation, the section-specific MARS scores were calculated by taking the arithmetic mean, while the overall MARS score was described as the arithmetic mean of the section scores. In addition, the Cohen kappa (κ) statistic was used to evaluate the interrater agreement. RESULTS: A total of 7 apps met the selection criteria, and only 3 included citations. The average rating score for Android apps was 3.5, with a minimum of 1.0 and a maximum of 4.9, while the average rating score for iOS apps was 4.7, with a minimum of 4.2 and a maximum of 4.9. The mean MARS score was 3.69 out of 5 (95% CI 3.34-4.04), with the lowest score of 1.96 for Medication Guidelines and the highest score of 4.27 for MCDEX mobile. The greatest variation was observed in the information section, which ranged from 1.41 to 4.60. The functionality section showed the highest mean score of 4.05 (95% CI 3.71-4.40), whereas the engagement section resulted in the lowest average score of 3.16 (95% CI 2.81-3.51). For the information quality section, which was the focus of this analysis, the average score was 3.42, with the MCDEX mobile app having the highest score of 4.6 and the Medication Guidelines app having the lowest score of 1.9. For the overall MARS score, the Cohen interrater κ was 0.354 (95% CI 0.236-0.473), the Fleiss κ was 0.353 (95% CI, 0.234-0.472), and the Krippendorff α was 0.356 (95% CI 0.237-0.475). CONCLUSIONS: This study systematically reviewed the mHealth apps in China with a DDI check feature. The majority of investigated apps demonstrated high quality with accurate and comprehensive information on DDIs. However, a few of the apps that had a massive number of downloads in the Chinese market provided incorrect information. Given these apps might be used by health care providers for checking potential DDIs, this creates a substantial threat to patient safety.