Cargando…
Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
BACKGROUND: Minimizing adverse reactions caused by drug-drug interactions (DDIs) has always been a prominent research topic in clinical pharmacology. Detecting all possible interactions through clinical studies before a drug is released to the market is a demanding task. The power of big data is ope...
Autores principales: | Wang, Meng, Wang, Haofen, Liu, Xing, Ma, Xinyu, Wang, Beilun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277366/ https://www.ncbi.nlm.nih.gov/pubmed/34185011 http://dx.doi.org/10.2196/28277 |
Ejemplares similares
-
Adverse Drug Reaction Discovery Using a Tumor-Biomarker Knowledge Graph
por: Wang, Meng, et al.
Publicado: (2021) -
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
por: Celebi, Remzi, et al.
Publicado: (2019) -
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
por: Hao, Xinkun, et al.
Publicado: (2022) -
Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications
por: Alshahrani, Mona, et al.
Publicado: (2022) -
Drug repurposing and prediction of multiple interaction types via graph embedding
por: Amiri Souri, E., et al.
Publicado: (2023)